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SUMMARY

An analytical technique is presented for approximating unsteady aerody-
namic forces in the time domain. The order of elements of a matrix Padé approx-
imation is postulated, and the resulting polynomial coefficients are determined
through a combination of least-squares estimates for the numerator coefficients
and a constrained gradient search for denominator coefficients which insures
stable approximating functions. The number of differential equations required
to represent the aerodynamic forces to a given accuracy tends to be smaller than
that employed in certain existing techniques where the denominator coefficients
are chosen a priori. The resulting Padé approximation allows the aircraft equa-
tions of motion to be formulated in terms of linear ordinary differential equa-
tions, a form amenable to the application of optimal control theory methodology.
The technique is applied to an aeroelastic, cantilevered, semispan wing whose
motion is expressed in terms of five elastic modes. A good estimate is obtained
to the generalized unsteady aerodynamic forces on the imaginary axis for ele-
ments of the matrix Pade approximation having fourth-order numerator and second-
order denominator polynomials.

INTRODUCTION

In the past two decades, control-system designers have seen a shift in the
mathematical techniques employed for the analysis and synthesis of dynamic sys-
tems. The emphasis has shifted from the so-called "classical" or frequency
domain methods developed prior to 1960 by investigators such as Nyquist and
Bode, which have played an important role with respect to single input/single
output systems, to the more "modern" state-space approach. This shift in empha-
sis can be attributed to the control designer not only requiring control but
also needing or desiring to "optimize" the performance of the control system.

A difficulty in using modern control theory for the design of systems to control
aeroelastic behavior is the requirement of transforming the unsteady aerodynamic
forces, normally provided in the frequency domain, into the time domain. Fur-
thermore, it is highly desirable to use a transformation that results in a
dynamic system that is of "reduced order," since the cost of the design
increases rapidly with increases in the number of differential equations used

to model the system. Several methods that have been presented in the literature
to perform this transformation are outlined.

A "Power Series Expansion Method" is presented by Weiss, Tseng, and Morino
in reference 1. This method assumes that the unsteady aerodynamic forces can
be represented by a power-series expansion in frequency. An advantage of this
method is that if the unsteady aerodynamic forces can be represented with two
or less terms, then no additional state equations are added to the set of equa-
tions used to represent the motion of the aircraft. However, as more terms are
added in the expansion, higher order derivatives of the aircraft state variables
are introduced. Since unsteady aerodynamic forces are characteristically pro-
portional to the delayed aircraft state, the use of these higher order terms to



approximate the unsteady aerodynamic forces generally will not be as satisfac-
tory as a more appropriate approximation function for the same number of added
state equations.

Edwards has proposed, in reference 2, the use of a "Rational Model” to
approximate the unsteady aerodynamic forces which add no additional state equa-
tions to the mathematical model. This method has been applied only to simple
examples because of the lack of a production computer code for the generation
of the aerodynamic forces in the Laplace domain.

The method most commonly employed is referred to as the "Least-Squares
Method." This method has been used for a number of different aerodynamic con-
figurations in references 3, 4, and 5. The method derives its name from the
method used to solve a set of simultaneous equations for the coefficients of
an assumed aerodynamic model. This assumed aerodynamic model consists of a
rational polynomial in the frequency domain. In order to make the problem
linear, the coefficients of the denominator polynomial are assumed known. A
least~squares estimator is then employed to solve for the coefficients of the
numerator polynomial. These coefficients minimize the mean~square error
between the predicted aerodynamic forces and the aerodynamic force data being
fit at a fixed set of frequencies. A disadvantage of this method, as it is
applied, is the requirement of the user to have a priori knowledge of the denom-
inator polynomial in the assumed aerodynamic model. These parameters, which
are usually arbitrarily chosen to be within the dynamic range of the natural
frequencies of the aircraft, determine the best accuracy that can be achieved
with a given model order. The order of the aerodynamic model is directly pro-
portional to the number of first-order constant coefficient differential equa-
tions generated by the algorithm, For the control-systems designer to increase
the accuracy of the approximation, he must either spend a considerable amount
of time and effort adjusting the parameters of the denominator polynomial or
increase the system order and pay the cost of additional state equations in the
design cycle.

Another method that has received attention in the literature is the "Matrix
Padé Method" as described in references 2, 6, and 7. This method has been
applied to a number of simple problems in references 2 and 7. However, when
this method is applied to problems of increasing difficulty where there are more
than two modes and/or when the predicted aerodynamics are not precise, the
resulting approximation function can be unstable. This characteristic of the
"Matrix Padé Method" was observed in reference 6. In the present paper, a func-
tion is considered stable if a bounded input (i.e., wing motion) always produces
a bounded output (i.e., distributed load on the airfoil). This must not be con-~
fused with a stable aerodynamic approximation function which, when coupled with
the dynamics of the structure, results in a closed~loop system that has a closed-
loop instability (i.e., flutter).

The method described in the present paper is an extension of the "Matrix
pPadé Method" and the "Least-Squares Method." A constrained gradient method is
used to find the denominator coefficients of the approximation while constrain-
ing the calculated approximation to be stable, and a linear least-squares method
is used to solve for the numerator coefficients. By using the method described
herein, the control designer need only adjust the order of the approximation
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until a satisfactory compromise is reached between the good accuracy obtained
when a large number of states are used and the high cost of performing modern
control-theory design on large systems.

A brief development of the equations of motion for an elastic airplane are
presented. The technique of approximating the unsteady aerodynamic forces is
then described. This technique is applied to an aeroelastic, cantilevered,
semispan-wing flutter model. Results obtained are compared with those found
using the "Least-Squares Method" in terms of both the fit of the oscillatory
aerodynamic forces and the predicted behavior of critical system characteristic
roots in the vicinity of flutter. The method developed in the present paper
utilizes a lower order approximation for the aerodynamic forces than that
employed in the "Least-Squares Method" of reference 3. The present method tends
in general to require a lower order of approximation than the "Least-Squares
Method" because of the inclusion of the denominator polynomials as additional
variables in the fit of the oscillatory aerdynamic forces. This results in a
smaller number of differential equations for the design model.

SYMBOLS
A matrix of coefficients used in solution of aerodynamic approximation
(see appendix)
[Ai] coefficient matrices of aerodynamic approximation of equation (21)
Ajj amplitude of generalized aerodynamic force Qjj(t)

A pv2 matrix of coefficients of first-order differential equations of
! complete system

aj coefficients of numerator polynomial of a Padé approximation

[B] matrix of coefficients (see matrix (C])

Bj vector of constant coefficients used in solution of aerodynamic
approximation (see appendix)

by, coefficients of denominator polynomial of a Padé approximation

(c] matrix of coefficients for system equations such that

[c] x(t) = [B] x(t)

Cy wing root chord (see fig. 2)

c/2 reference length

[p] generalized damping matrix

[Dm] coefficient matrices of aerodynamic approximation of equation (21)



e natural base

Flx(t)],F 1 [x(jw)] FPourier transform pair defined by equation (9)

[1] identity matrix

J measure of the error between data and approximation

Jj function minimized by equation (20)

Sj measure of the error between data and approximation of jth vibration
mode

j -V

K order of numerator polynomial of a Padé approximation

(K] generalized stiffness matrix

k reduced frequency, wc/2V

kg specific reduced frequency

M free-stream Mach number

[M] generalized mass matrix

M; generalized mass for ith vibration mode

m(x,y) ~ mass per unit area at point x,y

N order of unsteady aerodynamic Padé approximation and order of denomi-

nator polynomial in Padé approximation

Nj order of unsteady aerodynamic Pade approximation for ith vibration
mode

Nk number of reduced frequencies used in cost function

n number of vibration modes

(Pp] matrix of coefficients of [P(jw)] (see eq. (17))

[Pm,j] jth column vector of [Py]

P;4 (Jkg) ith,jth element of [P] evaluated at frequency kg

(P(jw) ], [P] matrix of numerator polynomials of unsteady aerodynamic Padé

approximation

AP(x,y,t) time varying total pressure distribution



APj(x,y,t) time varying pressure distribution due to impulse of jth mode

[o(t)] matrix of functions such that ith,jth element is unit impulse
response of ith generalized force due to an impulse of jth mode

Q; (t) generalized aerodynamic force in time domain for ith mode
Q4 (t) ith,jth element of [Q(t)]

[Q(jw)] Fourier transform of [Q(t)]

[a(jw)] unsteady aerodynamic Padé approximation

Qij(jkg) ith,jth element of [Q(jw)] evaluated at frequency kg,

[aij(jkz)] ith,jth element of [a(jw)] evaluated at frequency kg

qg(t) vector of generalized coordinate in time domain
qj (t) ith generalized coordinate in time domain

q(jw) Fourier transform of q(t)

[Rg ] matrix of coefficients of R(jw) (see eq. (16))

[R(jw)] matrix [R(jw)] with leading coefficient equal to [I]
Ry (k) jth element of [R(jw)] evaluated at frequency kg

[R(jw)],[R] matrix of denominator polynomials of unsteady aerodynamic forces
Pade approximation

£, jth diagonal element of [Ry]

s semispan length of wing in example

T(jk) general Padé approximation

t time

v free-stream velocity

Xy solution vector used in calculation of aerodynamic approximation (see
appendix)

X(t) system state vector

x(t) i state variable wvector

(x,y) scalar product

z(x,y,t) vertical displacement of body at point x,y



Ti viscous damping coefficient for ith mode

p reference density of fluid

di nondimensional mode shape used to define generalized coordinate
qj (t)

bi5 phase angle of Qjj(t)

w frequency of oscillation

Wn s natural frequency of vibration of ith mode

(1 norm, \/( , )

Dots over symbols denote derivatives with respect to time.

EQUATIONS OF MOTION FOR AEROELASTIC MODEL

The equations of motion for an elastic airplane in straight and level
flight can be formulated by using Lagrange's equations of motion with orthogonal
modes. By the method of separating variables, the motion on the wing is assumed
to be the product of a position function and a time function. It is also
assumed that the product of these functions can be represented with sufficient
accuracy by a finite series so that the vertical displacement at the point x,y
becomes

n

z(X,y,t) = Z gj (t) o5 (x,y) (1)

i=1

where ¢;(x,y) are the nondimensional mode shapes used to represent the system,
n is the number of modes included, and gj;(t) represents the generalized
coordinate with dimension of length, the particular unit depending upon the
system of units being used. If all of the structural damping present in the
aircraft is assumed to be viscous in nature, then the equations of motion can

be written as
. . 2 1
M; gj(t) + zCiMiwni qj(t) + wniMi q;(t) = - 5 pv2 Qi (%) (2)

where p,. is the natural frequency of vibration of the ith mode, 7; 1is the
ni i

viscous damping coefficient for the ith mode, and M; is the generalized mass
of the ith mode defined by




2
M; =55 [m(x,y) ¢i(x,y)] dx dy (3)
s

in which m(x,y) 1is the mass density of the body at the point x,y and

‘S [ ] ax dy is the integral of the function over the area of the body denoted

S
by S. The term on the right-hand side of equation (2) represents the general-
ized aerodynamic force applied to the ith mode and is defined by

1 1 AP(xl ' £)

-~ V2 03(0) = - pVZSS ]—y— b; (x,v)| ax ay (4)
) - pv2

2

where the term CV2/2 is the dynamic pressure of the free stream, AP(x,y,t)
is the time varying perturbation in the lifting pressure distribution at the
point x,y, and Qj(t) is the generalized aerodynamic force normalized by the

dynamic pressure. The lifting pressure distribution will be assumed to be
representable by the following equation:

n
t
AP(lert) = AP(XIYIO) + z j‘ APJ (x,y,t-T) q5 (T) 4art (5)
; 0
3=1

where AP:(x,y,t) 1is the time history of the pressure at the point x,y due
to the jtﬂ mode being displaced by the unit impulse function at t = 0. Substi-
tuting this expression for AP(x,y,t) into equation (4) with the initial pertur-

bation in the pressure distribution equal to zero and factoring out the dynamic
pressure, Qj;(t) can be expressed as

3 .t

Qi (t) = Z j Qi3 (t-T) qy(T) dt (6)
: 0
3=1

where Qij(t) is defined by



APj (x,5,t)
Qij(t) = -&Y - ¢i(x,y)| dx dy (7
- ov2
S 5P

Equation (2) can be rewritten in matrix form as
. 1 t

) 4 + (0] ) + (K] qeo) + - ov2 (" taen) am ar = 0 (8)
0

where [M] is a diagonal matrix with the ith diagonal element being defined by
equation (3), [D) 1is a diagonal matrix with the ith diagonal element being
2CiMﬂ”ni' [K] 1is a diagonal matrix with the ith diagonal element being . MjWn, s

[Q(t)] is a matrix with the ith,jth element being defined by equation (7), q(t)
is a vector with the ith element being the variable q;(t), and 0 is a null
matrix,

Introducing the Fourier transform pair as

x(jw) = Flx(t)] =j‘ x(t)e~Jwt gt A

g (9)

1 ® .
x(t) = Fl[x(Jw)] = — S‘ x(jw) eIVt ay
21 Ve J
and applying the transform to equation (8) yields
1
{(jw)z (M] + (jw) [D] + [K] + 5 pv2 [Q(jw)]} q(jw) =0 (10)

where the following Fourier transform properties have been used:



(w2 q(jw) = Fla(t)]

(Gw) q(iw) = Fla(t)]
) (11)
a(jw) = Flq(t)]

t
[Q(iw) ] a(jw) = FB [Q(t-T)] q(T) d{l
0 J

Equation (10) represents a variation of the classical flutter equation, and is
valid only for stable aircraft motion.

The ith,jth element of the matrix [Q(jw)] represents the Fourier trans-
form of the ith generalized unsteady aerodynamic force, normalized by the
dynamic pressure, due to a unit impulse of the jth mode. Alternatively, it can
be interpreted as the contribution to the ith generalized force due to a steady
oscillation in the jth mode at a frequency of w, which can be expressed in the
time domain as

Qij(t) = Aj sin (wt + ¢ij) (12)

where Ajs5 and ¢ij are the amplitude and phase angle of the ith,jth element
of [o(t)] or [o@Fwl.

DESCRIPTION OF TECHNIQUE

In this section an approximation is developed for the unsteady aerodynamic
forces in the frequency domain and, by inversion, in the time domain. The
approximation gives an accurate representation of the aerodynamic forces for
oscillatory motion provided the assumptions of small perturbation, inviscid
flow are valid. The primary sources of errors in the approximation are the
availability of only a limited frequency band of aerodynamic force data due to
oscillatory motion and the limited order of the matrix Padé approximation
employed to fit these data. Quantification of the accuracy of the aerodynamic
forces for arbitrary motion requires additional analytical and experimental
research and is beyond the scope of this paper.

Theoretical three-dimensional oscillatory aerodynamic forces are normally
calculated at a specified Mach number with the body oscillating at a number of
reduced frequencies. The reduced frequency Kk is a nondimensional number that
represents the number of radians through which the body oscillates per reference
length c¢/2 the body travels through the fluid, or

(13)

[
<15



where w is the dimensional circular frequency of oscillation and V 1is the
velocity of the body through the fluid. Vepa, in reference 7, and Edwards, in
reference 2, suggest that the unsteady aerodynamic forces may be approximated
by a ratlonal function of polynomials in the complex frequency domain (i.e.,

a Padé approximation in the reduced frequency domain). Padé approximations are
classified by the order of the polynomials of the numerator and denominator.

In the present paper, the notation [K,N] is used to represent a Padé approxi-
mation with a numerator polynomial of order K over a denominator polynomial

of order N, or

Jk)lal

N
Z (3k) ¥bg

|[\/1N

T(jk) = (14)

where T(jk) is the approximation of the function, aj are the coefficients of
the numerator polynomial, by are the coefficients of the denominator (the coef-
ficient by is set to unity), and k 1is the independent variable of the approx-
imation. Vepa, in reference 7, and Edwards, in reference 2, have suggested the
use of an [N+1,N] Padé approximation based on the high-frequency asymptotic
behavior of unsteady aerodynamics as predicted by piston theory. Since the
[N+1,N] approximation is a special case of the [N+2,N] Padé approximation and
since it is desired to approximate the unsteady aerodynamic forces only over a
specified frequency range (thereby ignoring the high-frequency behavior), an
[N+2,N] Padé approximation was employed for the development of the technique
described herein. This is also consistent with the order of the approximation
used in references 3 to 5 for the "Least-Squares Method."

The objective is to find a set of stable [N+2,N] Padé approximations
which best fit the matrix [Q(jw)] of equation (10) at a discrete set of fre-
quencies. The parameter N represents the number of terms used to represent
the lag in the development of the circulation (for the two-dimensional case they
would approximate the Theodorsen circulation function); henceforth, N is
referred to as the order of the unsteady aerodynamic Padé approx1mat10n. Also,
the term "Padé approximation" refers to the unsteady aerodynamic Padé approxima-
tion described in the present paper. A necessary and sufficient condition for
stability of the Padé approximation is that the roots of the denominator poly-
nomial of the Padé approximation have negative real parts. Furthermore, it is
appropriate, from the number of differential equations generated by the algo-
rithm and the amount of computational resources required by the algorithm, to
require that the denominator polynomial be the same for every column of the Padé
approximation. This forces the approximations of the unsteady aerodynamic
forces that are dependent on the motion of a particular mode to be a function

10



of the variables that approximate the lag in development of the circulation for
that mode and independent of the motion of the other modes. This results in a
savings in the number of equations used to approximate the system because one
set of equations are used to represent the lag in the development of the circu-
lation per mode rather than per element as in the general Padé approximation.
The problem is formulated as follows: let the matrix [Q(jw)] be the approxi-
mation in the frequency domain of the unsteady aerodynamic forces; let [P(jw)]
be a matrix of elements such that the ith,jth element represents the numerator
polynomial of the Padé approximation; and let [R(jw)] be a diagonal matrix
such that the jth diagonal element is the denominator polynomial of the Padé
approximation which best fits the jth column of the matrix [Q(jw)] at a dis-
crete set of frequencies. Then,

QGGw ] = [PGw ] [R(jw I (15)
where
o \N Nl o\ 2
RGw] = (GoyN (—) S GoYZ) my] (16)
2V 2V
2=0
N+2
c m
[P(jw) ] = Z (Jw)m (—) (Pp] (17)
= 2V

The details of the method of solution for finding the matrices [Rgy] and
(Pp] of equations (16) and (17) are given in the appendix. The method is out-
lined here. The problem is to find the matrices [P,] and [Ry] such that
[@(jw)] is a good approximation to [Q(jw)] subject to the constraints that
the roots of the polynomials defined by [R] in equation (15) have negative
real parts. This could be accomplished by minimizing

|05 (Gkg) = Qi5 (Gkg) ]2 (18)

n Nk
J=1 £=1

n

1
3.2
2 .
i=1

while satisfying the stability constraints. In equation (18), J 1is the cost
of the approximation, Nk 1is the number of reduced frequencies kg at which

11



aerodynamic force data are available, Qij(jkg) is the ith,jth element of
[Q(jk)] evaluated at the frequency kg, Qij(jkg) is the Padé approximation
for the ith,jth element of [Q(jk)] evaluated at the frequency kg, and

Il || is a metric norm as defined in the appendix. By noting that the influ-
ence of [P] and [R] on the cost is column dependent, by virture of [R]
being diagonal, the problem can be reduced into n smaller problems by mini-

mizing
] n
F = - Z [loij(3ke) - Qi (3ke) |12 (19)

the function actually minimized in this paper is

2

k
Jy = [19i3(3ke) Ry(ke) = Pij(Ike) |2 (20)

n
i=

©

1 %=1

where Rj(jkg) is the jth element of the matrix [R] and Pij(jkg) is the
ith,jth element of [P] evaluated at the reduced frequency kg. Minimizing
equation (20) rather than equation (19) results in larger errors at the lower
frequencies., It is shown subsequently to give good results. A numerical gra-
dient procedure is used to find [R(jw)] so that equation (20) is minimized
while constraining the roots of the polynomial to have negative real parts.

At each gradient calculation, a linear least-squares estimator is used to cal-

culate the elements of [P(jw)].

Equation (15) can be rewritten as

~ 2
Btim] = [ag] + (50 (%) (a) + ()2 (:—v) [ay]

N-1
c \I~N ] [_ ] ]

jw)™ | — R(jw) }~™ 21

+ Zo (jw) <2v> (D (jw) (21)

where [R(jw)] is equal to [R(jw)] with the leading coefficient set to the
identity matrix, or

12




- c \"N
[Rﬁmﬂl=(—) [R(jw) ] (22)
2V,

Taking equation (10) and substituting [a(jw)] of equation (21) for [Q(jw)]
results in

(1 + £ o2 h2)) G2 + (01 + 2 ve 1) G + (1 + 2 ov2 (ag)

] N-1 c \m-N _
+| 5 ov2 jg (D] (5;) Goim | [R(G 171 ) qta) = 0 (23)

m=0

The state-space formulation of this approximation to the aeroelastic model
is derived by denoting the state variables as follows:

x(t)y = F ! [q(5w) ] )

x(t)y = F [ (Gw) q(iw)] = x(t)y

x(t)3 = FT1[R™ (w) q(iw) ] P (24)
x(t) 4 = F-1[(Jw) R7 (Jw) q(jw)]

x(t)yg42 = F-‘[(jw)ﬁ-1 R™1 (jw) q(iw) ] = %(t)n41

Using equation (24), equation (23) can be rearranged as
k(t)) = x(t)2 (25a)

—([M] + g cz[A2]> %(t)o = ([K] + g v2 [Ao]) x(t)q

+ ([D] + 2 Ve [A1]) x(t) 2

13



%(t)3 = x(t)g (25¢c)

N-1
. 2-N
o]
X(t)n42 = x(B)7 - > (—2V) [Rg] x(t)g43 (25d)

Equations (25) represent a set of first-order constant-coefficient differential
equations which can be put into the form of

. pv2
X(t) = A M,— x(t) = [c]7! [B] x(t) (26)

The matrix [C] for N =4 is

-
(1] 9 0 0 02 0
0 M) + - c?(a;] (] 0 (1 [
[cl=1|0 0 (1] 0 [] 0 (27)
0 0 0 [1) 9o [}
[} [} [ [} 1] [}
0 0 2 o [} (1]
and the matrix [B] for N =4 |is
I (1) 0 o ] o 1
3 2
)+ o2 o) )+ Svemm) g ev? [%1(2—")4 sevz o) (B) e o) (Z) ez wa(E)
[1] 0 [ 28
(8} = - 0 (28)

e jo 1o
o le lo
e lo |e

ov2
The dimensions of the matrix A<M,—;—> are a function of the number of modes

used to represent the system n and the order of the Padé approximation used
N. For clarity in the above development, the order of the approximation was

14



made the same for every mode shape in the system. This allowed the equations
of motion to be derived with vector notation instead of using the individual
scalar equation for each mode. In practice, the order of the approximation for
each mode is adjusted until the error between the approximation and the aero—
dynamic data is below a preset value. The number of first-order differential
equations is equal to

n
2n + z N (29)
i=1

where N3 is the order of the Padé approximation used to approximate the
unsteady aerodynamic forces for the ith mode.

v2
The eigenvalues of A<M,———) include roots resulting from the unsteady-
2

aerodynamic~-forces approximation as well as the roots of the classical flutter
equation. The value of the dynamic pressure ov2/2 that results in an oscil-
latory eigenvalue with the real part of the eigenvalue equal to zero is the
Flutter point for the vehicle at the particular Mach number for which the
unsteady aerodynamic data were calculated. Determining the flutter point for
a range of Mach numbers determines the flutter boundary of the vehicle.

RESULTS AND DISCUSSION

The method developed in this paper is compared with the "Least-Squares
Method" of references 3, 4, and 5 by application to the example of reference 5
which is an aeroelastic semispan wind-tunnel model with an assumed plane of
symmetry at the root. The wing geometry is given in figure 1, and the general-
ized masses and frequencies are presented in table I for the first 10 elastic
modes. For the model used in this example, modes 1, 2, 4, 5, and 6 were used
to represent the wing. Structural damping was assumed to be negligible. The
oscillatory aerodynamic forces were calculated using a doublet-lattice technique
similar to that described in reference 8. In order to calculate the pressure
distribution on an oscillating wing undergoing simple harmonic motion, the lift-
ing surface is subdivided into an array of trapezoidal boxes arranged in strips
parallel to the airstream as shown in figure 2, The lifting surface is then
represented by a lattice of doublets located at the quarter chord of each box.
The downwash condition is satisfied at the three-quarter chord of each box by
equating it to the downwash resulting from the slope and deflection rate of each
structural mode. The lifting surface was divided into 210 boxes arranged in
30 strips spanwise with seven boxes chordwise. Oscillatory aerodynamic forces
were calculated at six reduced frequencies (k = 0, 0.1, 0.3, 0.5, 0.7, and 0.9).

The unsteady aerodynamic forces were approximated through the use of the
method described in this present paper to calculate the matrix coefficients of

15



equation (21) and equation (22). First- and second-order Padé approximations
were Esed fgr allAfive modei. The approximations (calculated in square meters)
for Oy, Q21, Q12, and Q95 unsteady aerodynamic forces for N = 2 are

017 = (3.39 x 1078) (jw)2 + (1.18 x 1074) (Jw) + (1.62 x 1072) )
(2.03 x 103) (jw)  (1.59 x 102) (jw)
jw + 5.52 x 10! jw + 7.15 x 102
021 = (1.13 x 1078) (jw)2 - (2.28 x 1075) (W) + (2.56 x 10-2)
(5.25 x 10~3) (jw)  (6.85 x 10~2) (jw)
- + —
jw + 5.52 x 10! jw + 7.15 x 102
> (30)
6]2 = (1.15 x 1077) (jw)2 - (1.51 x 10~4) (jw) - (1.69 x 10~1)
(3.42 x 1072) (jw)  (1.40 x 10™2) (jw)
+ - = - N
jw + 5.80 x 10! jw + 4.26 x 102
Q22 = - (8.47 x 1078) (§w)2 + (3.50 x 1074) (jw) - (2.47 x 107))
(6.18 x 1072) (jw)  (8.64 x 10~2) (jw)
+
jw + 5.80 x 10! jw + 4.26 x 102 /

The least-squares approximation for the same unsteady aerodynamic forces with
the same a priori parameters as in reference 5 are

017 = (3.81 x 1078) (jw)2 + (1.12 x 10-4) (jw) + (1.63 x 10-2)

(5.37 x 1073) (jw) , (8-49 x 1073) (jw)

jw + 8.50 x 10! jw + 1.70 x 102

(1.23 x 1073) (jw)  (1.08 x 10~2) (jw)
) . (31a)

jw + 2.55 x 102 jw + 3.40 x 102
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Qo1 =~ (1.12 x 1079) (w2 + (1.48 x 1076) (jw) + (2.55 x 10~2)

(1.56 x 10~2) (jw) (5.80 x 10™2) (jw)
+

jw + 8.50 x 10! jw + 1.70 x 102
(1.47 x 1077) (Jw)  (1.37 x 1077) (jw)
- + (31b)
jw + 2.55 x 102 jw + 3.40 x 102
Q12 = = (7.01 x 10~9) (jw)2 - (4.58 x 10~2) (5u0) - (1.68 x 10~7)
(7.45 x 1072) (jw)  (2.61 x 1071) (jw)
+ -
jw + 8.50 x 10! jw + 1.70 x 102
(6.41 x 1071) (jw) (5.17 x 1071) (Fw)
oo - (31¢)
jw + 2.55 x 102 jw + 3.40 x 102
Ogp = = (1.50 x 10-7) (3w)2 + (4.32 x 107%) (w) - (2.46 x 10~1)

, (1-53 10°1) (Gw)  (3.93 x 10™1) (Fw)

jw + 8.50 x 10! jw + 1.70 x 102

(6.88 x 10‘1)(jw)_ (3.69 x 10~1) (jw)

(314)
jw + 2.55 x 102 jw + 3.40 x 102

The fit, to the doublet-lattice data, achieved by the approximations described
by equation (30) and equations (31) is presented in figure 3. For this case,
figure 3 indicates that both the "Least-Squares Method" with four terms and the
Padé approximation method presented in the present paper with two terms are
accurate approximations for the @57, Qj7, and Q55 aerodynamic forces. The
Padé approximation for the 0Qj, aerodynamic force does not do as well as thg
"Least-Squares Method." But, an important point to be noted is that the Padé
method requires 33 percent fewer state equations than employed with the "Least-
Squares Method." In addition, the a priori parameters required by the "Least-~
Squares Method" are not needed by the Padé approximation method. The frequen-
cies and damping ratios predicted by the two methods are described in figure 4.
Figure 4 also presents results of a first-order Padé approximation when used

in the stability analysis. The figure indicates that the predicted damping
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ratio for the first mode is not as accurate for the first-order Padé approxi-
mation as for the second-order Padé approximation. Since the change in the
frequency and the damping ratio with respect to a change in the dynamic pressure
is predicted correctly near the flutter dynamic pressure, it may be possible to
use a first-order Padé approximation in the design stage while adjusting the
design parameters accordly to account for the error. If this could be done,

a 50-percent reduction in the number of state equations needed to represent the
system could be realized. As shown in figure 4, the second-order Padé approxi-
mation estimates the dynamic pressure at which the system becomes unstable to
about the same accuracy as does the "Least-Squares Method."

CONCLUDING REMARKS

An analytical method for approximating time-domain aerodynamic forces has
been presented. The method is based on approximating the oscillatory aero-
dynamic forces with Padé approximations in the reduced frequency domain. An
approximate time-domain representation is then developed, assuming stable air-
craft motion, through the use of the inverse Fourier transform. The analytical
method is applied to an aeroelastic wind-tunnel model and showed good agreement
with previously used analytical methods for predicting the flutter point and
stability trends. Some of the important results of this work are as follows:

1. All the parameters of the aerodynamic model are calculated without a
priori knowledge, unlike the currently formulated "Least-Squares Method."

2. The resulting approximations are stable in the sense that a bounded
input will produce a bounded generalized aerodynamic force output.

3. The number of differential equations required to represent the aero-
dynamic force to a given accuracy tends to be smaller than employed in certain
existing techniques where the denominator coefficients are chosen a priori,
The observed reduction in the set of system equations was 33 percent from
that employed in the "Least-Squares Method."

Langley Research Center

National Aeronautics and Space Administration
Hampton, VA 23665

September 5, 1980
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APPENDIX

APPROXIMATION OF UNSTEADY AERODYNAMIC FORCES

The generalized aerodynamic forces can be thought of as a matrix of elements
such that the ith,jth elements represent the generalized force that is applied
to the ith structural mode due to a pressure distribution caused by the jth mode
oscillating at a reduced frequency. 1In practice, the generalized aerodynamic
force matrix is calculated for a number of specific Mach numbers and reduced
frequencies. This appendix describes a technique which calculates an approxi-
mation to the unsteady aerodynamic forces as a rational polynomial in reduced
frequency. Details are only provided for the first-order Padé approximation
(N =1).

Consider equations (15), (16), and (17), with k being substituted for
We/2Vv and N = 1. Then

o3k ] = [p(ik) ) [R(3k) ]~ (A1)
where

[R(3k)] = [Rgd + (3k) [1] (A2)
and

(p(ik)] = [pg) + (3k) [py] + (GK)2 [Py] + (3k)3 [P5] (A3)

The matrices [Ro], [Po], [P1], [Pz], and [P3] must be found such that the
following equation is made as small as possible and the roots of the polynomials
of equation (A2) have negative real parts

2
~

] . o .
3= Hloijike) - Q14 ike) []2 (A4)

n
i=

n

Py
U
—r

1 =1

The function ]l l' is the norm of the argument and is defined as
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APPENDIX

[1xl] = ix,x) (A5)

where the function ( , ) 1is the scalar product which has the following metric

properties:
(x,x) 2 0 (equality holds if and only if x = 0)
(y,x) = Conjugate (x,Y)

(x,cy) = c(x,y) (c = Constant)

(x,V1+y2) = (x,77) + (leZ)

The minimization of equation (A4) can be separated into n smaller prob-

lems by noting that the influence of [Pl and [R] on the cost is column

dependent since [R] is diagonal. Therefore, the problem is to find the jth
[Pz'-], and fP3,-] of the matrices [Po],

column vectors [P ,j]' (pq,51,
[py]}, [P2], and ?P3] and the jth element rg,j Of the diagonal matrix

{Ro]

. & Nk
J5 =5 Z Z ”Qij(jkg,) [ro,j + (jkg)] - [Po,j] - (Jkg) [P]rj]
i=1 L=]

- (ikg) 2 [py,5] - (k)3 [p3,51}]2 (R6)

The effect of minimizing equation’(AG) instead of equation (A4) is to cause the
maximum relative error of the Pade approximation to be at the lower frequencies.

For a given ro,jr equation (A6) can be rewritten as

Jj:lZZ ”BJ—AXJHZ (A7)

i=1

where
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P 1
o
—
10
|t
.
—_
aj
L =]
-
.
i
o
»
-
~
—

By = (A8)

K 0 re [(3k1) 2] o ]
1 0 Rel:(jl;Nk)ﬂ 0
A = (29)
0 Im(jky ] 0 Im Ejlq )3T_|
0 Im[j kNl:] 0 Im Kjka)él

- -
Po,ij
P1,ij
x5 = | J (A10)
P2,ij

P3,ij

— -

where Pp, iy is the ith, jth element of (Ppl. If the constraint that is
ijll2 = Minimum (a11)

imposed so that the requirement of the rank of the matrix A in egquation (A9)
does not have to equal the dimension of X5, the unique solution to equation (A7)
exists as (ref. 9)
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APPENDIX

Xj = a’ By (A12)

where A+ is the pseudoinverse of A in equation (A9).

The minimization of equation (A6) is performed by a numerically constrained
gradient procedure described in reference 10 for the variables of equation (A2).
The constraint that must be enforced is that the resulting approximation func-
tion be stable. It is necessary and sufficient for the function to be stable
if the roots of the functions described by equation (A2) have negative real
parts. For the example presented in the appendix this requires that

rg,5 < 0 (213)

At each step in the parameter search for the minimum fo equation (A7), equa-
tion (A12) is used to solve for the variables in equation (A10). The procedure
for higher order approximations is similar.
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TABLE 1.- FREQUENCY AND GENERALIZED MASS

Mode Natural fregquency, ngeralized mass,
Hz kg
1 5.233 3.678
2 19.129 7.769 o
3 20.906 7.044
4 25,769 2.970
5 46.110 4.714
6 61.234 4.758
7 79.682 5.156
8 86.030 11.297
9 98.087 7.558
10 118.150 5.501
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Figure 1.- Model planform.
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Figure 2,.- Paneling scheme for doublet-lattice aerodynamics.
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Figure 3.- Approximation for Q;y, Qj3, Qiy, and Q22 at M = 0.90
as a function of reduced frequency (reduced frequency at flutter
equals 0.12).
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